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Model details and supplementary analyses 

EC.1. Model details: Transformation from deterministic, continuous to stochastic, discrete 

model 

We transform the model to a stochastic form following the approach first suggested by Gillespie 

(Gillespie 1976) and more recently described in the context of a polio transmission model by Eichner and 

Dietz (Eichner and Dietz 1996) by first initializing the state variable (Si(t), Ii(t) and Ri(t)) to equal the in-

tegers closest to their pre-vaccine equilibrium values.  To determine the time step �(j) until the next event 

(i.e., a birth, death, infection, recovery, vaccination, or waning of immunity), we first list all transfer 

flows for the current state of the system in one array.  With �(j) the sum of the flows in the current state 

and U1 a random uniform number between 0 and 1, the step size equals �(j) = –Ln(U1)/�(j) (Eichner and 

Dietz 1996). We then draw a second random uniform number between 0 and 1, U2, to determine which 

event occurred in the step according to the probability distribution implied by the array of transfer flows.  

To simulate transfers, we increment or decrement state variables by 1.  If the event is a death, we draw 

two additional random uniform numbers to determine the immunity status of the deceased with respect to 

each disease according to the proportions of susceptibles, infecteds, and removeds at step j.  If the transfer 

at step j is an infection, the incidence inc(j) for that step is 1 and we increment the cumulative incidence, 

which starts at 0, by 1.  The perceived incidence at step j (pinc(j)) is a first order exponential smooth of 

the true incidence and follows from: 
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where � = 1 year is the perception delay time.  

 

EC.2. Supplementary analyses 

EC.2.1 Impact of population size and structure on time until elimination 



ec2 
e-companion to Duintjer Tebbens and Thompson: Priority shifting and the dynamics of managing eradicable infectious diseases 
 

  

The attractiveness of eradication policies depends on the time until elimination occurs.  In this paper we 

assume a homogeneous population of 10,000 people.  To explore the impact of population size and struc-

ture on the time until elimination, the following results focus on a single population with a single infec-

tious disease.  Figure EC1 depicts the relationship between the average time until the last case occurs (i.e., 

elimination) and the size of the (homogeneous) population, with all other inputs at their base case values.  

Figure EC1: The relationship between population size and average time until elimination (based on 
n = 100 iterations and homogeneous mixing) in the single-disease, single population stochastic mod-
el, with the dotted line showing the logarithmic regression.  
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Clearly, Figure EC1 suggests a logarithmic relationship (R2>0.99).  Extrapolating this relationship to a 

much larger population of  6.5 billion people, we obtain an average time until elimination of 11.2 years.  

More realistically, we can view the world as consisting of many subpopulation blocks in which transmis-

sion is homogeneous.  Global eradication occurs after the last case occurred in the last subpopulation that 

still has transmission.  If we assume that the world consists of M homogeneous subpopulations, then the 

time until global eradication equals Y=max(X1, X2, ... , XM), where random variable Xi represents the time 

until the last case in subpopulation i.  If we assume identical subpopulations, all subject to the same im-

munization rate, and that reintroductions into previously transmission-free populations do not take off 

(presumably due to sufficiently high population immunity achieved in the process of local elimination), 

then the Xis are i.i.d. and the expected time until global eradication is 
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= > = −� � , with Fx the common probability distribution function of the 

Xis.  Fitting lognormal distributions to the samples that generated the average elimination times in Figure 

EC1, we can estimate the expected time until global eradication for different global population sizes and 

sizes of the subpopulations, as shown in Figure EC2. This shows relationships between total population 

size and time until last case similar to Figure EC1.  Note that dividing the world into increasingly larger 

subpopulations means larger expected values for each Xi, but smaller M, which together lead to a slightly 

decreasing E(Y). The results are sensitive to the estimated standard deviation of the lognormal distribu-

tions, which explains the ambiguous impact of the subpopulation size.  

Figure EC2: The expected time until last case globally (E(Y)) as a function of subpopulation size 
and total population size, based on lognormal distributions fitted to samples obtained from running 
the single-disease, single-subpopulation stochastic model (n = 100 iterations for each subpopulation 
size). 
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More realistically, the Xis are not i.i.d. given the possibility of exportations delaying global eradication, 

and different properties of each subpopulation.  Modeling a very large global population with assump-

tions that reflect the structure and properties of each for the disease in question implies very large compu-

tational costs and falls beyond the scope of this paper.  However, Figure EC3 provides some insight into 
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the relationship between time until global eradication and the extent of transmission across subpopula-

tions.  The figure assumes a population consisting of 5 identical blocks of 500 people, each subject to the 

same immunization rates. We denote the probability that an individual’s infectious contact is with another 

individual in another subpopulation as poutside (see formulas for the transmission coefficients as a function 

of poutside elsewhere (Duintjer Tebbens et al. 2005)).  Figure EC3 suggests that increasing this transmission 

heterogeneity increases the expected time until global eradication, although the increase remains minor 

even with as many as half of contacts occurring with individuals in other subpopulations.  Thus, unless a 

very high proportion of infectious contacts occur outside of subpopulations, the relationship between ex-

pected time until global eradication and global population size in Figure EC2 remains a good approxima-

tion.  The mean time until the last case of 2.34 for poutside=0 remains consistent with an estimate of 2.26 

based on the maximum of 5 draws from a lognormal fit to the elimination times for a single population of 

500 people.  

Figure EC3: The average time until the last case as a function of the probability of an infectious 
contact being with an individual in a different subpopulation (poutside), based on 500 iterations. The 
results assume a total population consisting of 5 subpopulations of 500 people, all subject to the 
same immunization rate, and focus on elimination of a single disease. 
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EC.2.2 Impact of population size on cost-effectiveness 
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Using a logarithmic relationship (see above), we can approximate the cost-effectiveness ratios for each 

decision rule as a function of population size.  First, we note that unless elimination occurs, the model 

scales to population size, meaning that both the costs and cases are linear functions of population size.  

Thus, the cost-effectiveness ratios for the decision rules C1-C3 corresponding to control remain the same 

regardless of population size.  For the eradication policies (decision rules E1 and E2), the costs depend on 

the time until cessation of vaccination.  For decision rule E1, the time until cessation equals twice the ex-

pected time until the last case, which we determined above to be logarithmically related to population 

size.  In spite of this logarithmic relationship, we found that the expected number of cases until eradica-

tion depends approximately linearly on population size (results not shown).  This is not surprising given 

that the incidence curve scales to population size, with comparatively very few cases accumulating during 

the logarithmically-extended last phase of eradication associated with a larger population size.  To esti-

mate cost-effectiveness ratio for decision rule E1 versus no vaccination, we use the logarithmic fit of ex-

pected time until last case and population size from the previous paragraph and assume that for each dis-

ease the expected number of cases between equilibrium state and last case equals k×N for base case 

u=1.32, with k=0.0897 (determined in a separate simulation varying N between 100 and 1 million).  To 

approximate the CER for decision rule E2, we alter the stopping criteria to exactly 5 years after the last 

case instead of a certain perceived incidence threshold, which would become a poor criterion for large 

population sizes.  Figure EC4 shows the results. While the CER for E1 starts at about 14 $/case for small 

populations (as in Table 2), it increases to approximately 55 $/case for population sizes of 1 billion or 

more, similar to the CERs with C1 and C3.  For such large populations, cessation of vaccination (i.e., 

elimination of both diseases) does not occur within the 20-year time horizon, meaning that the costs re-

main equal to those with the control policies while the cases approach or exceed those with the control 

policies.  For decision rule E2, the CER starts at a higher level of 42 $/case (as in Table 2) and eventually 

exceeds the CER for the control policies at almost 70 $/case for a population of 6 billion people.  This 

analysis shows that eradication becomes economically attractive only when the population that still has 

endemic transmission has already been reduced to a small enough geographic area.  While the precise 
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economics will depend on the actual transmission model structure and input values, a policy of going 

from endemic transmission everywhere to global eradication at once is unlikely to emerge as cost-

effective within a limited analytical time horizon.  Rather, a more realistic scenario consists of a policy of 

control to eliminate transmission in most areas followed by eradication in the remaining areas (see com-

ments in the next section).  

 

Figure EC4: Approximate incremental cost-effectiveness ratio (without discounting) of decision 
rule E1 versus no vaccination as a function of population size, assuming a homogeneous population. 
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EC.2.3 Impact of (prior) vaccination intensity on time until elimination 

The previous section demonstrated that the size of the total population substantially affects the 

expected time until global eradication, which potentially alters the balance in favor of control, depending 

on the time preference of future versus immediate benefits.  In practice, this means that embarking on a 

global eradication initiative becomes economically attractive only if either: a) high immunization rates are 

attainable, or 2) substantial progress has already been made in controlling the disease.  

Taking the base case assumptions from Table 1, Figure EC5 shows that the time until the last case 

in a single-disease model with a population of 10,000 people initially decreases rapidly as the immuniza-

tion rate exceeds û, with diminishing returns (i.e., in terms of time until last case) as the immunization 
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rate further increases. Consistent with that observation, Figure EC6 shows that the lowest (i.e., best) in-

cremental cost-effectiveness of pursuing eradication compared to no vaccination occurs for an immuniza-

tion rate of approximately 1.25 times û.  Even with the linear cost function, the costs of very high immu-

nization rates do not compare favorably with the associated benefits of being able to stop vaccination 

sooner.1 

Figure EC5: The average time until elimination (based on n = 100 iterations) in the single-disease, 
single-population model as a function of the immunization rate relative to the theoretical threshold 
value (û) above which infection prevalence permanently decreases. * 
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*For the data point u/û=1, in 1 of the 100 iterations, elimination did not occur within 20 years. For the av-
erage shown in the figure, we artificially set the time of the last case at 20 years.  
 

                                                           
1 We  note that the theory developed by Barrett and Hoel (2007), which relies on a somewhat different transmission 
model (no waning of immunity and vaccination of susceptibles only) and including the costs associated with disease 
cases, suggests that “Only when vaccination costs increase substantially [i.e., more than linearly] with the rate of 
vaccination should a slower course be followed.”  
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Figure EC6: The incremental cost-effectiveness ratio over a 20-year time horizon of pursuing 
eradication (assuming cessation of vaccination immediately after the last case) compared to no 
vaccination in the single-disease, single-population model as a function of the immunization rate of 
the eradication policy relative to the theoretical threshold value (û) above which infection 
prevalence permanently decreases.  
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All previous results assumed the pre-vaccine equilibrium as the starting point. Figure EC7 ex-

plores the impact of different levels of control already achieved before time 0.  For a given immunization 

rate in the interval from 0 to û, we assume as the initial control level the equilibrium state associated with 

the given immunization rate.  Figure EC7 shows that for a control level less than approximately half of 

the elimination level û, the time until the last case does not differ much from that associated with the pre-

vaccine equilibrium initial values.  However, as the initial control level approaches the elimination level, 

the expected time until the last case decreases rapidly.  This implies that if a high level of control already 

exists, the expected time until the last case becomes low, and thus the economics of eradication become 

more attractive.  Based on the single-disease results shown in Figure EC7, we estimated the incremental 

cost-effectiveness of pursuing eradication compared to maintaining the given initial control level (assum-

ing cessation of vaccination immediately after the last case).  For this example, we found that for a control 

level of approximately 25% of û or more, pursuing eradication economically dominated a policy of main-

taining the control level, meaning that regardless of the economic value associated with prevented cases 
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eradication came out net beneficial.  For initial control levels of less than approximately 25% of û, the 

economic attractiveness depends on the economic value associated with prevented cases.  For example, if 

the initial control level is no vaccination at all, the net benefits of eradication become positive for an eco-

nomic value of approximately $13 per prevented case.  This example illustrates the theory developed by 

Barrett and Hoel that states that if eradication is feasible, high control is never optimal and eradication 

always represents an economically better option (Barrett and Hoel 2007). 

Figure EC7: The average time until elimination (based on n = 100 iterations) in the single-disease, 
single-population model as a function of the initial control level immunization rate relative to the 
theoretical threshold immunization rate (û) above which infection prevalence permanently de-
creases.  
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EC.2.4 Impact of heterogeneity of infectious disease properties 

Our base case model assumes that both infectious diseases have identical properties.  While this 

assumption remains helpful in the context of explaining shifts in priority and demonstrating that the be-

havior of interest is a property of the system and not a consequence of the input values selected, in prac-

tice infectious diseases will typically differ in many properties.  Without fully exploring the impact of 

differences in each property, we provide one analysis of a possible asymmetry.  For example, if we as-

sume that the R0 of ID2 equals twice that of ID1, this means that û for ID2 becomes 1.98 per year and that 
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a budget of 2,145,000 (instead of 132,000 at the base case) supports vaccination at 1.5 times the average 

of û1 and û2.  Clearly, decision rule C1, which mandates vaccination at half the available budget for both 

infectious diseases, would result in an immunization rate exceeding û1 (but not û2) and thus eradication of 

disease 1 would occur despite not explicitly pursuing eradication.  For decision rules C2, E1, and E2 we 

found roughly the same behavior as in the base case, although with different time intervals between pol-

icy changes.  For decision rule C3 (resource allocation proportional to perceived incidence), ID2 was most 

often the disease with the highest incidence, and therefore the most often the target of high vaccination. 

When we computed the incremental CERs compared to no vaccination, we found higher ratios (consistent 

with the greater resource use), although the relative differences among the CERs for the different decision 

rules did not change substantially. 

 

EC.2.5 Impact of the perception time 

Our base case model characterizes the perceived priority based on the exponential smooth of the 

true incidence, with a perception delay time of � = 1 year.  For simplicity, we assumed that � reflects both 

the delay in observing incidence and the time it takes to shift resources and change policy.  In reality, 

these two delays represent separate processes that each may vary substantially depending on the context.  

Further, one may argue that the delay until policy changes take effect behaves more like a fixed lag rather 

than an exponential smooth.  Here, we briefly analyze alternative formulations and values.     

Given that decision rules C1 and E1 do not depend on the perceived incidence, we focus on the other 

three rules.  For decision rule E2, the impact of increasing � or adding a lag is clearly a longer time until 

cessation of vaccination resulting in higher costs and more cases due to the later start of the eradication 

program for ID2.  In contrast, the impact of delays on decision rules C2 and C3 is less straightforward.  

Figure EC8 shows how � influences the expected number of cases.  For decision rule C2, which overre-

acts most heavily to perceived shifts in priorities, we see a rapid increase in total expected cases when 

increasing � from 0 to 1 year.   Apparently, if this policy responds very quickly to shifts in incidence, it 
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mitigates the size of the epidemics.  However, if we further increase �, we allow high immunization rates 

to persist longer, leading to a higher probability of eliminating one of the diseases.  After eliminating one 

disease, all resources become available for the other and elimination of the other follows.  Thus, we see a 

slight decrease in expected cases between �=1.5 and �=2 years.  Based on the curve for decision rule C3, 

we find a much smaller impact of � if we moderate the response to shifts in incidence by allocating re-

sources in a proportional manner. 

Figure EC8: The impact of varying the perception delay time (ττττ) on the expected number of cumu-
lative cases for both diseases after 20 years for decision rules C2 and C3. 
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 To explicitly consider a delay in shifting resources and implementing policy changes in response 

to changes in perceived incidence, the following analysis adds a fixed lag on top of the exponentially 

smoothed perceived incidence.  The extra lag allows control against one disease to persist a fixed amount 

of time longer regardless of how much incidence of both diseases evolves, and thus increases the prob-

ability of “chance” eliminations with the control policy.  In essence, this means that for long lags the con-

trol policy becomes more similar to the eradication policy, especially for decision rule C2.  Figure EC9 

shows how a lag time improves the cost-effectiveness of decision rule C2.  In the event of elimination, we 

here assumed that vaccination would stop as soon as the prevalence for both infectious diseases becomes 
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0 (as with decision rule E1). While adding a short lag markedly improves the cost-effectiveness, further 

increasing the lag does not help since it means implies a longer time until vaccination switches from the 

first eliminated disease to the other.   Therefore, the cost-effectiveness remains higher (i.e., less good) 

than decision rule E1.   

Figure EC9: The impact of an added fixed lag (on top of the exponential perception delay) on the 
incremental cost-effectiveness ratio of decision rule C2 versus no vaccination (based on 20 itera-
tions).  
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EC.2.6 Impact of a quadratic instead of a linear cost function 

 Arguably, the costs of vaccination rise more than linearly as the immunization rate reaches high 

levels.  As an example, we here investigate the impact of a quadratic function (u/û)2×N×c instead of the 

linear function (u/û)×N×c assumed for the analyses in the main paper.  Given the model’s assumption of a 

fixed budget, the change in cost function leads not to different costs but to different immunization rates 

for each decision rule.  Thus, a budget allocation of p translates into an immunization rate as follows: 

(u/û)2×N×c = p×B = p×1.5×N×c  � u =  û×(1.5×p)0.5.  We applied this relationship to the budget alloca-

tions implied in each decision rule to generate results for the quadratic cost function.  Table EC1 shows 

how the assumption of a quadratic cost function alters the expected number of cases for both diseases 



ec13 
e-companion to Duintjer Tebbens and Thompson: Priority shifting and the dynamics of managing eradicable infectious diseases 
 

  

with each decision rule.  For C1, the immunization intensity becomes 0.76 instead of 0.66, leading to a 

drop in the number of cases by more than half.  While the immunization intensity is still lower than û, in 

28% of the iterations “chance” elimination occurred within the 20-year time horizon.  Similarly, with the 

quadratic cost function, decision rule C3 holds the immunization rate closer to û than with the linear cost 

function, leading to an even more dramatic drop in cases and “chance” elimination in 60% of iterations.  

In contrast, for decision rule C2 the immunization rate becomes either 0 or 1.22 û instead of either 0 or 

1.5 û with the linear cost function, leading to an important increase in cases and “chance” elimination in 

0% of iterations.  Similarly, the eradication policies achieve a lower immunization rate with the same 

budget if the cost function is quadratic instead of linear, and thus incur greater numbers of cases, although 

elimination still occurs in every iteration.  The quadratic cost function will lower the costs for decision 

rules C1 and C3, not affect the costs for decision rule C2, and raise the costs for decision rules E1 and E2.  

The difference in costs for the control policies depends on how long vaccination would continue after 

“chance” elimination.  Overall, this supplementary analysis shows that the shape of the cost function may 

alter the economics in favor control policies that moderate resources between the two infectious diseases.  

Thus, it underscores the need to thoroughly study the nature of the cost function for any real-world case.   

 
Table EC1: The impact of a non-linear cost function on the expected cumulative cases (undis-
counted) for both diseases at the end of 20 years with each decision rule (based on 100 iterations).  
Policy - decision rule Expected cumulative cases (both diseases)  after 20 years 
 Linear cost function Quadratic cost function 
C1: Even resource allocation 16,857 7,493 
C2: Full resource allocation towards most 
pressing disease 25,926 32,370 
C3: Resource allocation proportional to 
perceived incidence 17,818 7,361 
E1: Cease vaccination after infection pre-
valence reaches 0 7,380 9,390 
E2: Cease vaccination after perceived 
incidence drops below 1 15,913 16,956 

 

References 

See references list in the main paper. 



ec14 
e-companion to Duintjer Tebbens and Thompson: Priority shifting and the dynamics of managing eradicable infectious diseases 
 

  

 

Barrett, S. and Hoel, M. (2007). "Optimal disease eradication (in press)." Environment and Development Econom-
ics. 

Duintjer Tebbens, R. J., Pallansch, M. A., Kew, O. M., Cáceres, V. M., Sutter, R. W., and Thompson, K. M. (2005). 
"A dynamic model of poliomyelitis outbreaks: Learning from the past to help inform the future." American 
Journal of Epidemiology 162(4): 358-372. 

Eichner, M. and Dietz, K. (1996). "Eradication of poliomyelitis: When can one be sure that polio virus transmission 
has been terminated?" American Journal of Epidemiology 143(8): 816-822. 

Gillespie, D. T. (1976). "A general method for numerically simulating the stochastic time evolution of coupled 
chemical reactions." Journal of Computational Physics 22: 403-434. 

 


