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Expressions for population immunity 
 
Thompson et al. (2013)[17] provide expressions for the effective susceptible proportion (ESP) 
and the effective immune proportion (EIP) in the homogeneous mixing model with partial 
infectibility by weighing each individuals in each immunity state by their (potential) relative 
contribution to fecal-oral and oropharyngeal transmission (i.e., the product or relative 
susceptibility, relative infectiousness, and relative duration of infectiousness compared to fully 
susceptible individuals).  We extend the concept to account for age-heterogeneous mixing and 
heterogeneous mixing between subpopulations.   
 
We start with the case of age-heterogeneous mixing in a single spatially homogeneous 
population, which corresponds to the model for the analyses in this paper.  We first define the 
following notation [6] (Duintjer Tebbens RJ, Kalkowka DA, Wassilak SGF, et al, in preparation) 
for further detail on these and their use in the model): 
ni = number of immunity states (including recent and historic states); i=0 represents the fully 
susceptible state 
na = number of mixing age groups (the model includes 8 age groups, but we assume that 
preferential mixing occurs only between 3 mixing age groups) 
ns =  number of infection stages (only the infectious (i.e., non-latent) stages matter here) 
ne = number of transmission modes (i.e., fecal-oral and oropharyngeal) 
R0 = overall basic reproduction number (may vary over time) 
μ = mortality rate, averaged over all age groups 
S(a,i) = number of people in mixing age group a and immunity state i (i.e., this excludes LPV-
infected people)  
I(a,i,e,s) = individual in mixing age group a  from immunity state i in infection stage s for 
transmission mode e  
N(a) = total number of people in mixing age group a  
n(a) = proportion of all people in mixing age group a 
p(e) = proportion of transmissions via transmission mode e 
σ(i) = relative susceptibility of immunity state i   
γ(i,e) = duration of infectiousness for immunity state i with respect to transmission mode e  
π(i,e,s) = relative infectiousness with respect to transmission mode e of an individual from 
immunity state i in infection stage s (i.e., equals 0 for the latent stages of infection) 
π(i,e) = ∑ π i, e, s  = relative infectiousness with respect to transmission mode e of an 
individual from immunity state i   

∑ ∑ ∑ , , , / ,  = effective susceptible 

proportion in mixing age group a 
, ∑ ∑ , , , , , /  = effective proportion infectious in mixing age 

group a with respect to excretion mode e 
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The force-of-infection to mixing age group a equals [6] (Duintjer Tebbens RJ, Kalkowka DA, 
Wassilak SGF, et al, in preparation): 

1/ 0, e , ,  

Where M(a,b) is the normalized preferential mixing matrix that describes the relative contact rate 
from individuals in mixing age group a to individuals in mixing age group a [18,19]: 

, 1
1 1

∑ 1
 

where κ(a) is the proportion of contacts by individuals in mixing age group a reserved for other 
individuals in mixing age group a, and the indicator function 1(condition} is 1 if condition is true, 
and 0 otherwise. 
 
Given that N(a) depends on time, we recalculate the mixing matrix at each time step.  If κ does 
not depend on the mixing age group (as in most uses of the model, [6] (Duintjer Tebbens RJ, 
Kalkowka DA, Wassilak SGF, et al, in preparation)  including the analyses from this paper), then 
κ(a) = κ and M(a,b) = κ1{a=b}+(1- κ)n(b). 
 
The term 1/ 0, e  represents the average duration of infection by excretion mode e for a 
typical fully susceptible individuals, taking into account the mortality rate for a typical fully 
susceptible individual.  The duration of infectiousness remains much shorter than the mortality 
rate of any mixing age groups used in the model, and therefore small changes in mortality exert 
negligible impact of the force-of-infection.  Therefore, using the average mortality rate instead of 
the age-specific rate and also ignoring the effect of multiple infection stages subject to the same 
background mortality rate on the average duration of infectiousness [20] leads to negligible error.      
In a homogeneous mixing model, each infection generates on average Rnet=R0×ESP secondary 
infections, where Rnet is the net reproductive number.  By definition, R0 equals Rnet if the entire 
population is fully susceptible (i.e., ESP=1).  Similarly, for a model with age-heterogeneous 
mixing, we define the effective susceptibility matrix as:  
 
ESP(a,b) = M(a,b) ×ESP(a)  
 
ESP(a,b) represents a measure of how susceptible mixing age group a is to mixing age group b, 
taking into account the immunity profile of mixing age group a and the corresponding inherent 
potential to contribute to transmission, as well as the relative contact rates from mixing age 
group a to mixing age group b.  If κ does not depend on the mixing age group, then ESP(a,b) = 
(κ1{a=b}+(1- κ)n(b))×ESP(a). 
 
Analogous to homogeneous mixing, the net reproductive matrix for age-heterogeneous mixing 
equals: 
Rnet(a,b) = R0×ESP(a,b) = R0× M(a,b) ×ESP(a) 
 
When the entire population is fully susceptible (i.e., ESP(a)=1 for all a), then Rnet(a,b) represents 
a simplified next-generation matrix (NGM), and the dominant (i.e., largest) eigenvalue of this 
matrix equals R0.[21]  The simplification occurs because it does not account for the effect of 
mortality on the average duration of infectiousness in which infection involves multiple latent 
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and infectious stages,[20,21] but the effect remains very small because without exception the 
duration of infectiousness remains much shorter than the mortality rate of any mixing age groups 
used in the model.   
 
By analogy, we define: 
ESPM = dominant eigenvalues of ESP(a,b) = age-mixing-adjusted effective susceptible 
proportion in the population 
EIPM =1-ESPM = age-mixing-adjusted effective immune proportion 
If ESPM stays below its threshold ESP*, or equivalently if EIPM stays above its threshold EIP*, 
then the infection will eventually die out, where: 
ESP* = 1/R0 
EIP* = 1- 1/R0 
 
To extend the mixing-adjusted ESP and EIP to also include mixing between subpopulations, as 
used in some situations (e.g., northern India, NW Nigeria, and the Netherlands [6] (Duintjer 
Tebbens RJ, Kalkowka DA, Wassilak SGF, et al, in preparation)), we define: 
nsp = number of modeled subpopulations = 2 
m = number of conceptual subpopulations of size N/m, where N is the total size of all m 
subpopulations 
sp = 0 = index of the under-vaccinated subpopulation, with size N/m 
sp = 1 = index of the general subpopulation, with size Nx(1-1/m)  
ESP(a,sp) = effective susceptible proportion in mixing age group a and subpopulation sp 
EPI(a,e,sp) = effective proportion infectious in mixing age group a and subpopulation sp with 
respect to excretion mode e  
pwithin = proportion of contacts of individuals in the under-vaccinated subpopulation reserved for 
other individuals of the same subpopulation 
Msp(a,b)= mixing matrix M(a,b) using population by age for subpopulation sp instead of N(a) in 
the expression for M(a.b) 
 
The age-specific force-of-infection for the under-vaccinated subpopulation equals: 

, 0 1/ 0, e , , , 0

1/ 0, e , , , 1 1  

The force-of-infection for the general subpopulation equals:[6] 

, 1 1/ 0, e , , , 0 1 / 1

1/ 0, e , , , 1 1 2 /

1  
 
We build the net reproductive matrix (size nsp x na by nsp x na) for the model with two 
subpopulations and age-heterogeneous mixing from four blocks Rsp1,sp2  (size na x na each): 
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Following the expressions above for the force-of-infection and rewriting it as a single expression 
using indicator functions, we define sub-matrix Rsp1,sp2 as: 

, ,
, , 1

1 1 1 ,

1
1

1 ,

2
1
	 1 1 	  

Rsp1,sp2(a,b) represents the number of secondary infections in subpopulation sp1 and mixing age 
group a resulting from 1 infection in subpopulation sp2 and mixing age group b.  Dividing by R0 
yields the effective susceptibility matrix for the two-subpopulation model with age-
heterogeneous mixing: 

, , , , /
, , 1

1 1 1 ,

1
1

1 ,

2
1
	 1 1 	  

 
Finally, the subpopulation and age-mixing adjusted measures of population susceptibility and 
immunity equal: 

ESPM = dominant eigenvalues of ESPsp1,sp2(a,b) = subpopulation- and age-mixing-adjusted 
effective susceptible proportion in the population 

EIPM =1-ESPM = subpopulation- and age-mixing-adjusted effective immune proportion in the 
population 

If ESPM stays below the threshold ESP*=1/R0,or equivalently if EIPM stays above its threshold 
EIP*=1-1/R0, then the infection will eventually die out.   
 
We use the power iteration algorithm[22] to determine the largest eigenvalue of the square ESP 
matrix.    
For any given square matrix A, we carry the algorithm out in the following steps: 

1. Start with an initial, random vector b0 with the same length as the dimension of A. 
2. Compute the next iteration of b as: bk+1 = A bk/||A bk||, where the denominator represents 

the norm of the vector A bk, i.e., (A bk)T(A bk). 
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3. Repeat step 2 for some pre-specified number of iterations K.  The sequence bk
 converges 

to the dominant eigenvector of A (unless by chance the initial vector b0
  coincides with a 

non-dominant eigenvector of A, which remains highly unlikely given that we use random 
real numbers for b0).   

4. Assuming that bK represents a sufficiently close approximation of the dominant 
eigenvalue of A, compute the corresponding dominant eigenvalue of A using the 
Rayleigh quotient  
bK

T A bK / bK
T bK.  

Additional results 
 
Figure A1 shows the results for all three serotypes for the scenarios shown in Figure 2d.  Figure 
A2 shows the results for all three serotypes for the scenarios shown in Figure 3b.  Figure A3 
shows the results for all three serotypes for the scenarios shown in Figure 3c.  Figure A4 shows 
EIPM of reference case compared to the threshold EIP* for both areas for all three serotypes. 
 
Figure A1: The impact of the strategies to manage cVDPV2 risks on population immunity in 
northwestern Nigeria: 

(a) type 1  

 
(b) type 2  
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(c) type 3  
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Figure A2: The impact of the strategies to manage cVDPV risks on population immunity in 
northwestern Nigeria: 

(a) type 1  

 
(b) type 2  

 
(c) type 3  
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Figure A3: The impact of the strategies to manage cVDPV risks on population immunity in 
northwestern Nigeria: 

(a) type 1  

 
(b) type 2  

 
(c) type 3  

 
 



9 
 

Figure A4: Effective immunity proportion (EIPM) of reference case compared to the threshold 
(EIP*) for northwestern Nigeria, continued status quo after 2013: 

(a) type 1  

 
(b) type 2  

 
(c) type 3  
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