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TECHNICAL APPENDIX 

A1. Equations for age-mixing and sub-population mixing 

Given the importance of age-mixing and mixing between subpopulations for the analysis of 
expanded age group SIAs, this section summarizes our equations, as described in more detail in 
prior work.[1, 2]  For simplicity, we use the shorthand notation of the effective proportion 
infectious (EPI) for each mixing age group in the model, which represents the prevalence of 
infection weighted by the relative contribution to transmission of individuals by immunity 
state.[1]  In the model, this quantity exists for each virus strain and depends on the mode of 
transmission (fecal-oral or oropharyngeal) and the relative infectiousness in each infection stage 
for individuals depending on their prior immunity state.  It may represent a sum over multiple 
model age groups since we always use the same mixing age groups of 0-4 years, 5-14 years, and 
15 or more years while the model age groups typically remain narrower.   
 
For age-mixing, we use the preferential mixing model, with κ(a) representing the proportion of 
contacts in mixing age groups a reserved for other individuals in mixing age group a, while the 
remaining proportion 1- κ(a) of contacts get evenly distributed over all other age groups, 
including age group a.[3, 4]  For the three situations considered in this analysis, we assume 
constant  κ by mixing age group, with κ of 30%, 35%, and 40% of contacts in Tajikistan, 
northern India, and northwestern Nigeria, respectively, as noted in the text.  Based on standard 
theory for preferential mixing,[3] the normalized mixing matrix M(a,b) equals: 
 

𝑀(𝑎, 𝑏)(𝑡) = 𝜅(𝑎)1{𝑎=𝑏} +
�1 − 𝜅(𝑎)��1− 𝜅(𝑏)�𝑁𝑏(𝑡)

∑ 𝑁𝑐(𝑡)�1 − 𝜅(𝑐)�𝑛
𝑐=0

 

where Na(t) represents the number of people in mixing age group a at time t and the indicator 
function 1{condition} equals 1 if the condition holds or 0 otherwise.  Given that N depends on time, 
the mixing matrix gets recalculated at each time step. 

For mixing between sub-populations, we use a similar but slightly different construct.  We 
hypothetically divide the model population into m subpopulations of equal size.  We consider 
one of these m subpopulations the under-vaccinated subpopulation, while the remaining m-1 
subpopulations represent the general populations. We then define pwithin

 as the proportion of 
contacts of any of the m subpopulations reserved for individuals of the same subpopulation, with 
the remaining proportion 1- pwithin occurring with the other m-1 subpopulations, not including the 
given subpopulation.  Thus, for individuals in the under-vaccinated subpopulation, the weight for 
contacts from the same under-vaccinated subpopulation equals pwithin and the weight for contacts 
from the general population equals 1- pwithin.   

Combining the expressions for age-mixing and sub-population mixing, we obtain the following 
expression for the force-of-infection from a given virus strain to an individual in mixing age 
group a of the under-vaccinated subpopulation: 

𝜆𝑎𝑠𝑢𝑏(𝑡) = 𝛽 � 𝐸𝑃𝐼𝑏𝑠𝑢𝑏(𝑡)𝑀𝑠𝑢𝑏(𝑎, 𝑏)(𝑡)𝑝𝑤𝑖𝑡ℎ𝑖𝑛

𝑛𝑎𝑚−1

𝑏=1

+ 𝐸𝑃𝐼𝑏
𝑔𝑒𝑛(𝑡)𝑀𝑔𝑒𝑛(𝑎, 𝑏)(1 − 𝑝𝑤𝑖𝑡ℎ𝑖𝑛) 
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Here, nam refers to the number of mixing age groups (i.e., 3 for all analyses in this paper), β 
represents the approximate transmission coefficient which in the model depends on R0, the 
mortality rate and the transmission mode-dependent average duration of the infectious period for 
fully susceptible individuals,[1] and the subscripts ‘sub’ and ‘gen’ denoted the under-vaccinated 
subpopulation and the general population, respectively.  In our model, the mixing matrices 
Msub(a,b) and Mgen(a,b)  remain the same because we do not assume any differences in 
demographic inputs for the two subpopulations.   

For the general population, all of the pwithin within-subpopulation contacts occur with members 
within the general population.  However, we must divide the proportion 1- pwithin of outside-
subpopulation contacts to include (m-2)/(m-1) contacts with members of other subpopulations 
within the general population and 1/(m-1) contacts with members of the under-vaccinated 
subpopulation.  Thus, for individuals in the general subpopulation, the weight for contacts from 
the general population equals pwithin+ (1-pwithin)× (m-2)/(m-1) and the weight for contacts from the 
under-vaccinated subpopulation equals (1- pwithin)/(m-1).  For individuals in the general 
population, the expression for the force-of-infection equals: 

𝜆𝑎
𝑔𝑒𝑛(𝑡) =
𝛽∑ 𝐸𝑃𝐼𝑏𝑠𝑢𝑏(𝑡)𝑀𝑠𝑢𝑏(𝑎, 𝑏)(𝑡)(1 − 𝑝𝑤𝑖𝑡ℎ𝑖𝑛)/(𝑚− 1)𝑛𝑎𝑚−1

𝑏=1 + 𝐸𝑃𝐼𝑏
𝑔𝑒𝑛(𝑡)𝑀𝑔𝑒𝑛(𝑎, 𝑏)((1−

𝑝𝑤𝑖𝑡ℎ𝑖𝑛)(𝑚− 2)/(𝑚− 1) + 𝑝𝑤𝑖𝑡ℎ𝑖𝑛)   

To characterize die-out in the model, λ for any subpopulation and age group becomes 0 if the 
weighted sum of the effective proportion infectious drops below the transmission threshold (i.e., 
of 5 per million). 
 
Figure A1 shows the relative contribution to transmission of individuals with recent or historic 
LPV infections, defined as the product of their relative susceptibility, relative infectiousness, and 
relative duration of infectiousness compared to fully susceptible individuals.[1] 
 
A2. Characterization of SIAs in the prospective model 
 
Rationale 
 
Our approach to characterize historic SIAs for the retrospective model[1] relied on specifying 
vaccination rates that produced realistic proportions of missed children by SIAs after each 
calendar year, based on the assumption that every targeted individual in any subpopulation faced 
an equal chance of receiving a dose during each round.[1]  Consequently, as the number of 
rounds in a year increased, the approach required decreasing the effective per-round impacts 
(denoted with ζ in the article[1]) to achieve the same annual cumulative percentage of missed 
children by SIAs.  For example, to accomplish 10% cumulatively missed children by SIAs in a 
given year with 3 rounds required an effective per-round impact of ζ = 54% while with 6 rounds 
this decreased to ζ = 32%.  However, in the extreme event that 90% of targeted children simply 
received 6 doses while 10% received none, this would imply a true coverage of 90% in each 
round.  This extreme event would imply many more doses used, the majority reaching recently 
vaccinated and immune children.  In most real situations, the reality probably lies between these 
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two examples.  Our simplified approach for the retrospective model[1] implicitly assumed that 
the doses received by already vaccinated children do not affect the dynamics significantly.  
However, we recognize that the simplification we used to fit the generic model inputs will not 
support prospective analyses to directly test different assumptions about the impact of individual 
rounds as opposed to the cumulative impact over some specified time period (e.g., a calendar 
year).  Thus, we developed a characterization of SIAs for the prospective model that allows 
direct specification of the true coverage of individual rounds and the probability of children 
repeatedly receiving or missing doses.  The characterization allows direct extraction of the 
number of doses administered, which translates into doses distributed after accounting for 
wastage, and comparison of zero-dose proportions in the model to the reported zero-dose 
proportions among NPAFP cases.   
 
General characterization 
 
Ideally, characterization of SIAs would specify probabilities of a targeted child receiving a dose 
during a round conditional on any possible vaccination history (from routine and SIAs).  This 
would capture the reality that hard to reach or underserved individuals based on past rounds may 
experience a higher risk of not receiving a dose than individuals who received doses in most or 
all of their dose opportunities.  However, our differential-equation based model tracks immunity 
states for individuals in aggregate and not individual dose histories, which remain different 
because individuals can become immune without receiving a dose (i.e., through WPV or 
secondary OPV infection) or receive a dose without becoming immune due to imperfect take of  
all polio vaccines.[1, 5]  Stratifying the model by all possible dose histories would add more 
complexity to the model than practically workable (since in some situations children receive 
more than 20 doses of different OPVs, for example in northern India).  Even if we could track 
dose histories in more detail (e.g., using an individual-based model), insufficient data exist to 
support specification of the conditional probabilities of receiving a dose during an SIA by all 
possible dose histories.  Therefore, our approach focuses on conditional probabilities of receiving 
a SIA dose depending only on receipt of a dose in the previous round.  Specifically, the approach 
specifies the following new model inputs, all bounded between 0 and 1: 

• The true coverage (TC) of an SIA round, defined as the fraction of the targeted 
population that receives a dose in a given round.   

• The repeated missed probability (PRM), defined as the conditional probability that a 
targeted individual does not receive a dose in a round, given that the individual did not 
receive a dose in the previous round despite falling into the targeted population for that 
round.  

• The repeated reached probability (PRR), defined as the conditional probability that a 
targeted individual receives a dose in a round, given that the individual received a dose in 
the previous round. 

 
TC depends on the size of the target population (N), the number of doses distributed (ND), and 
the wastage factor (w), defined as the fraction of doses distributed to the field that does not get 
administered: 
 
TC = ND×(1-w)/N 
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TC typically gets measured by administrative data on doses distributed and by campaign 
monitoring, or sometimes by surveys conducted after individual SIAs (e.g., lot quality 
assessment surveys).  PRM and PRR capture the likely reality of a correlation of receiving doses or 
not in subsequent rounds.  Given that PRM and PRR must together produce TC, specification of 
two of the three model inputs above suffices to characterize an SIA (as illustrated in Figure A2), 
which considers two consecutive rounds.  In Figure A2, branch b1 represents the fraction of 
targeted individuals who receive a dose in two consecutive rounds, b2 those who receive a dose 
in the first but not in the second round, b3 those who receive a dose in the second but not in the 
first round, and b4 those who do not receive a dose in either round.  The total fraction who 
receives a dose in the second round equals: 
 
TC2 = b1 + b3 = TC1×PRR + (1-TC1)×(1-PRM) 
 
Where TCi denotes the true coverage of round i and PRR and PRM

 both pertain to the second 
round.  Thus, PRR must satisfy: 
 
PRR = (TC2 - (1-TC1)×(1-PRM))/TC1 
 
We note that if TC remains equal between successive rounds, then PRR remains in the interval 
[0,1] for any values of TC and PRM, but the more TC changes between successive rounds, the 
more limits exist on PRM to keep PRR in the interval [0,1].  For example, TC1=0.75 and TC2=0.80 
leads to the requirement of PRM<0.73.   
 
Use in the model 
 
To apply the above characterization in the model, we must keep track of the fraction of the 
population in each immunity state that received a dose in the most recent round.  For simplicity, 
we do so only for those individuals who did not yet acquire active immunity (i.e., from 
vaccination or natural exposure to a LPV), which represent the main drivers of immunity.  
Specifically, we divide all of the fully susceptible and maternally immune individuals (FSMI) 
into three categories, each subject to the appropriate probabilities of receiving a dose if exposed 
to an SIA and still falling within the target age range: 

• New children (NC, as fraction of all targeted children) born after the previous SIA round 
who receive a dose in the current round with probability TC.  

• Reached children (RC, as fraction of all targeted children) who received a dose in the 
previous SIA round but remained FSMI due to failure to take and who receive a dose in 
the current round with probability PRR. 

• Missed children (MC, as fraction of all targeted children) who did not receive a dose in 
the previous SIA round and who receive a dose in the current round with probability 1-
PRM. 
 

To determine the vaccination rates for all targeted FSMIs, we use the average coverage for all 
FSMIs: 
 
covFSMI = TC×NC +PRR×RC + (1-PRM)×MC 
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To determine the fraction of FSMIs in each of the above three categories (by age), we begin to 
accumulate new FSMIs from newborns as soon as any SIA round finishes in age-dependent 
stocks for new fully susceptible individuals (i.e., NFSa(t)) and new maternally immune 
individuals (i.e., NMIa(t)), subject to the same in- and outflows as any other fully susceptible 
individuals and maternally immunes in the model.  Thus, for age group a and at the beginning of 
the current SIA (i.e., time tcurr):  
 
NCa = (NFSa(tcurr)+ NMIa(tcurr))/(FSa(tcurr)+MIa(tcurr)).  
 
where FSa and MIa represent the total number of fully susceptible and maternally immune 
individuals in age group a, respectively. The remaining fraction of FSMIs represents either MC 
or RC.  To determine the breakdown of all remaining FSMIs into MC and RC, the model 
“remembers” those fractions from the previous round.  Given that both MC and RC behave as 
fully susceptible or maternally immune individuals, they remain subject to the same fractional 
outflows between subsequent rounds, and therefore the fractions remain intact.  Specifically, for 
given age group a, the fractions equal: 
 
MC/(MC+RC) = (1-covFSMI)/(1- tr×covFSMI)σi   (1) 
RC/(MC+RC)= 1- MC/(MC+RC)    (2)  
 
Here, tr represents the appropriate take rate for the vaccine used during the previous round, and 
σi the relative susceptibility of the respective immunity state, which equals 1 for fully susceptible 
and approximately 0.8 for maternally immune individuals.[1]  The fraction of 0.8 accounts for 
the assumed lower susceptibility to live poliovirus for maternally immune than fully susceptible 
individuals.  In the model, this translates into multiplication of the effective vaccination rate due 
to the SIA by relative susceptibility, leaving more maternally immune than fully susceptible 
recipients of a dose uninfected.  Consequently, the fractions of remaining children missed (i.e., 
MC/(MC+RC) or that did not take (i.e., RC/(MC+RC)) differ slightly between fully susceptible 
and maternally immune individuals.  
 
Finally, we compute the coverage covImm for all individuals with actively acquired immunity 
(i.e., those not fully susceptible or maternally immune at the beginning of an SIA round) based 
on the requirement that the overall coverage equals TC.   

 
covImm = (TC – fsmi×covFSMI)/(1- fsmi) 
 
where fsmi denotes the fully susceptible or maternally immune proportion of the target 
population.  We multiply both covFSMI and covImm by the fraction F of all individuals in the 
modeled population within target age range that an SIA targets.  F typically equals 1 but may 
equal less than 1 if the modeled population represents an entire state while the SIA targets only a 
subset of all districts in the state (i.e., fractional rounds). 
 
We calculate effective vaccination rates as evrFSMI =-ln(1-covFSMI×tr)/d for FSMIs and evrFSMI =-
ln(1-covImm×tr)/d for immunes, where tr is the appropriate take rate for the SIA and d the 
duration of the SIA,  similar to the retrospective model[1] except for the dependence on the 
immunity state.  As in the retrospective model,[1] these effective vaccination rates change over 



6 
 

time according to the dates and assumed TC and PRM for each SIA, but remain constant for the 
duration of each round. 
 
Calculation of implied zero-dose children 
 
To interpret model assumptions about the true coverage and repeated miss probabilities of SIAs 
in a given situation, we derive the zero-dose proportions implied by those inputs.  Doing so 
allows comparison to existing data about dose histories of children in population, in particular to 
the zero-dose proportions reported among NPAFP cases recorded as part of the AFP surveillance 
reporting system.  Thus, we need to estimate the probability that a child receives neither routine 
nor SIA doses, given assumed true coverage, repeated miss probabilities, and routine 
immunization coverage levels.  Given that meaningful data on zero-dose proportions only exist 
for young children, we consider only children that did not yet reach the upper end of the target 
age range (i.e., typically 5 years of age). 
 
We start with the probability of not receiving any SIA dose by defining the following Bernoulli 
event for given child x: 
 
A  = “Child x did not receive any SIA doses at time t” with probability P(A) 
 
While the formula for P(A) is straightforward when all SIAs target the entire modeled 
population, a complication arises when SIAs target only a fraction of all individuals in the target 
age range from the modeled population, which we refer to as fractional rounds.  In the 
retrospective model, we characterized fractional rounds simply by multiplying the per-round 
impact by the targeted fraction of the modeled population.[1]  However, the concept of 
repeatedly missing individuals in rounds changes in the context of fractional rounds, because 
some individuals missed by the fractional round get missed not because they represent members 
of hard to reach or underserved communities, but because they simply fell outside of the targeted 
population.  Therefore, we must consider three groups: targeted and reached, not targeted 
reachable, and truly missed.  We refer to the last group as the truly missed (TM) fraction, while 
the second group represents the omitted reachable (OR) fraction (i.e., those missed in a round 
due to the fractional nature of the round).  Individuals in both of these groups receive no vaccine 
in the current round, but we need to distinguish them because the probability of receiving a dose 
in a subsequent round depends on the status of truly missed (subject to repeated miss probability 
PRM ) or omitted reachable (subject to repeated reach probability PRR).  Thus, we recursively 
calculate the zero-dose proportion after any given number of SIAs.  After the first round, the 
expressions for the different groups equal: 
 
TM1 = (1 – TC1) 
OR1 = (1 – F1) × TC1  
 
For any subsequent round r, the recursive expressions equal: 
TMr = TMr-1 × PRM,r-1 
ORr = ORr-1 × (1 – Fr) × PRR,r-1+ TMr-1 × (1 – Fr) × (1 – PRM,r-1) 
 
Total zero-SIA-dose children after nr rounds = P(A) = TMnr + ORnr  
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Index r spans each SIA conducted in the modeled population of individual x ranging from first 
round after birth (r=1) to the most recent round that occurred at time t (r=nr).  When all rounds 
target the entire modeled population (i.e., no fractional rounds such that all ORr=0), the 
expression reduces to: 
 
𝑃(𝐴) = (1 − 𝑇𝐶1) × ∏ 𝑃𝑅𝑀,𝑟

𝑛𝑟
𝑟=2   

 
Consistent with this calculation of children missed by SIAs, in the model the missed children 
(MC, i.e., those subject to PRM) also includes truly missed children, while the reached children 
(RC, i.e., those subject to PRR) includes both reached and omitted reachable children (i.e., 
equations (1) and (2) in the previous subsection do not involve F).    
 
With respect to routine immunization, coverage data typically characterize the coverage with the 
birth dose (POL0) separately from the coverage with each non-birth dose (POLi, i =1, 2, …).  For 
simplicity, we assume that children who do not receive a first non-birth dose also do not receive 
a birth dose, so that we can directly estimate the probability for the event that a child did not 
receive any routine immunization dose from the routine immunization coverage data: 
 
B = “Child x did not receive any routine doses” with probability P(B2) = 1-POL1(tbirth+age1) (if 
the child is old enough to qualify for the first routine dose according to the recommended 
schedule, and 0 otherwise) 
 
where tbirth+age1 indicates the time when child x reaches the age of the first dose according to the 
recommended schedule.  The equation for P(B) assumes that all children who received at least 
one non-birth dose get counted towards POL1, even if they did not receive their first non-birth 
dose at the scheduled age of the first non-birth dose.  This assumption remains consistent with 
the reported decreasing coverage estimates by dose[6-8] (i.e., if children who received only a 
dose at the recommended age of the second dose would only get counted towards POL2, then 
POL2 coverage could exceed POL1 coverage).  
 
Finally, we similarly define the event: 
 
C = “Child x did not receive any doses (whether routine or SIA)” with probability P(C) 
 
P(C) is the probability that both A and B occur, or P(A ∩ B) (i.e., the probability of the 
conjunctive event  “A ∩ B”).  Following standard probability theory, P(A ∩ B) depends on the 
conditional probability that B occurs given that A occurs: 
 
P(B) = P(A ∩ B) = P(A) × P(B | A) 
 
P(B | A) specifies the conditional probability that child x did not receive a routine immunization 
dose given that (s)he did not receive an SIA dose.  Similarly, one could compute P(A ∩ B) from 
P(A|B), but given our goal of characterizing missed children by SIAs, we focus on the former 
formula for P(B ∩ A).  The conditional probability P(B | A) relates to the dependence between A 
and B.  If A and B are independent, then P(B | A) = P(B).  In contrast, if B completely and 
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positively depends on A, then with probability 1 a child who did not receive any SIA doses also 
did not receive any routine immunization doses, so that P(B | A) = 1.  Reasonably assuming 
positive dependence (i.e., the probability that a child did not receive any routine immunization 
dose given that the child did not receive any SIA dose equals or exceeds the unconditional 
probability that a child did not receive any routine immunization dose, P(B | A) ≥ P(B)), we can 
parameterize the range of values for P(B | A) as: 
 
P(B | A) = P(B) + dd × (1-P(B)) 
 
where dd may range from 0 to 1 and it represents the degree of dependence between missing all 
SIA doses and missing all routine immunization doses, with dd = 0 corresponding to 
independence and dd = 1 to the greatest possible degree of positive dependence.   We introduce 
this non-standard degree of dependence because the conventional (Pearson) correlation between 
two Bernoulli random variables cannot attain any arbitrary values in its range -1 to 1.[9]  For any 
given assumption about dd, substituting the above expression into equation 1 above gives the 
probability that child x did not receive any routine immunization or SIA dose: 
 
P(C) = P(A ∩ B) =  P(A) × P(B|A) = P(A) × (P(B) + dd × (1 - P(B)) 
 
P(C) represents the probability that child x received doses in the same sense as an NPAFP case 
reporting 0 doses.  In the absence of any information on the dependence between routine 
immunization and SIA doses, we arbitrarily assume dd=0.5.  We note that this choice does not 
impact the model results in any way, but only affects the comparison of implied zero-dose 
proportions in the model with available data and zero-dose children. 
  
SIA impact in under-vaccinated subpopulations 

In some situations (e.g., northern India, northwestern Nigeria), we characterize chronically 
under-vaccinated groups as separate subpopulations in the model.[1]  These may represent 
particularly hard-to-reach groups of people who get reached by SIAs at a much smaller overall 
coverage level than the general population.  Moreover, we assume that these under-vaccinated 
groups preferentially mix with each other and consequently play an important role in sustaining 
WPV transmission even when coverage in the general population becomes very high.  As AFP 
surveillance may also reach these groups at a much lower rate than the general population, we 
typically assume that zero-dose proportions from NPAFP cases reflect the SIA impact in the 
general population.  We characterize the impact of SIAs based on a relative coverage level 
compared to the general population.  Using superscripts “sub” and “gen” as above to denote the 
under-vaccinated subpopulation and the general population, respectively, we assume for any 
given SIA that:  
 
TCsub = TCgen×covrel 
 
where covrel denotes the relative coverage of the under-vaccinated subpopulation, which may 
change over time or by round.  In general, multiplying the coverage for both previously reached 
and previously missed children by covrel will not satisfy the requirement that these sum up to 
TCsub, and therefore we impose the somewhat arbitrary assumption that the coverage for 
previously reached and previously missed children both decrease by the same relative amount r:  
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PRR

sub = PRR
gen×r 

 
1-PRM

,sub = (1- PRM
,gen)×r  → PRM

e,sub = 1- (1- PRM
gen)×r 

  
For the under-vaccinated subpopulation the following equation must hold (i.e., the two top 
branches in Figure A2 still must add up to the true coverage): 
 
TC2

sub = TC1
sub×PRR

sub
 + (1-TC1

sub)×PRM
,sub = TC1

sub×r×PRR
gen

 + (1-TC1
sub) ×r×PRM

,gen 
 
Solving for r, we get: 
 
r = TC2

sub/ (TC1
sub×PRR

gen
 + (1-TC1

sub) ×PRM
,gen) 

 

A3. Model calibration 

Two factors significantly impact the calibration of the model: complexity and data quality.  Our 
detailed description of the model[1] provide context related to all of its various components, 
including the immunity states, the process of OPV evolution, and assumptions related to the 
dynamics of transmission (e.g., durations of infectiousness).  We relied on extensive reviews of 
the literature and input from experts to develop the model, and we fix all inputs that should 
remain the same between different situations (i.e., inputs that depend on poliovirus serotypes or 
immunity states).  We allow situation-specific inputs to vary appropriately.  For example, we 
constrain values for R0 within reasonable ranges for each World Bank income level, and we use 
population data and estimates of routine immunization coverage from available sources.  We 
face significant challenges with respect to data quality in the context of calibrating the model, 
because even with a global surveillance network, many cases do not get detected.  We cannot 
observe infections that do not lead to cases, which means that we cannot observe the process of 
OPV evolution as it occurs.  To calibrate the OPV evolution process in the absence of observable 
data, we compare the performance of the model to outbreaks with cVDPVs and to observations 
of no cVDPVs in situations in which they do not occur.  By requiring the generic model inputs to 
work across highly variable situations, we gain some confidence that the inputs will hold, 
although we do not know whether other values would also work.  We do not claim that our 
model finds the true values for any of the inputs, which may not in fact represent knowable 
quantities.  Instead, we focus on developing a model that will provide useful insights about the 
dynamics and inter-relationships of the various components, which we hope will provide a good 
basis for then considering the implications of potential changes.  Thus, we build the model to 
develop a reference case that reasonably represents our understanding of reality and we require 
consistency with any available data.  We primarily focused on fitting the dynamics of the time 
series of the multiple types of incidence data (including the zero values that correspond to a lack 
of observed cVDPVs) and die out, and we placed secondary weight on the reported estimates of 
zero-dose children reported in the NPAFP data.  We then hold all of the model inputs from the 
reference case constant and explore the implications of changing the targeted age ranges.  In this 
context, any errors should apply equally for all scenarios considered so long as we make 
comparisons to the reference case.  For each setting we face significant limitations related to the 
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quality of the field and epidemiological data.  For example, no information exists about the 
actual true vaccine coverage achieved for any round, the probability of repeatedly missing or 
reaching children with SIAs, or the take rates achieved for each serotype of vaccine.  We also 
created the concept of somewhat isolated, under-vaccinated subpopulations to account for some 
of the heterogeneity that exists in the population and the need to capture this in the context of a 
differential equation based model.  Unlike simple models, which might focus on fitting values of 
one or more of a small number of inputs for the purpose of finding the best-fit value of the 
inputs, our models focus on the interdependent system and finding inputs that provide reasonable 
agreement to all of the existing data.  In this context, independently varying individual model 
inputs (e.g., R0) in a sensitivity analysis would not provide meaningful results because these 
different values may no longer produce a reasonable representation of the historical experience.  
For example, with a lower R0 and all else equal, WPV2 and WPV3 would die out much earlier 
than observed, while with higher R0, WPV2 may persist for much longer than observed.   
 

A4. Further details of reference cases 

We updated a number of model inputs for the scenarios considered based on a more appropriate 
SIA characterization and access to additional country-specific data (e.g., NPAFP data).[1]  Most 
changes involve relatively small variations within wide uncertainty ranges for inputs for which 
no direct measurements exist (Table 1 in the main paper).   
 
For Tajikistan, the last large-scale SIAs prior to the 2010 outbreak date from 8 years before, 
which implies relatively little impact of these SIAs on the 2010 outbreak.  In the absence of data 
on the quality of early SIAs in Tajikistan or large enough numbers of NPAFPs cases to reliably 
estimated zero-dose proportions over time, we assume true coverage of 0.8 for each pre-outbreak 
SIA, consistent with typical relatively good SIA quality in former Soviet Republics.  Given the 
existence of hard-to-reach or underserved groups in Tajikistan, we assume repeated miss 
probabilities of 0.7 for each SIA.  For the response to the 2010 outbreak, data indicate very high 
coverage in each round.[10]  At the time of the first outbreak response SIA, virtually all children 
targeted represent newly born children since the last previous SIAs, so the choice of PRM leads to 
almost no impact on the model results (i.e., all targeted children remain subject to TC).  
However, for subsequent response rounds we assume a relatively high risk of again getting 
missed for the small fraction that did not receive a dose in the prior round (i.e., PRM = 0.8).  
These assumptions lead to a slight change in the model result compared to the previously 
published SIA characterization,[1] which led us to adjust the assumption about over-reporting of 
routine immunization coverage due to unregistered children from 0.9 to 0.88 in order to again 
obtain a modeled outbreak consistent with the reported data. 
 
For northwestern Nigeria we now assume that DTP coverage rates in existing surveys provide a 
more accurate measurement of true routine polio immunization coverage than POL,[11] which 
we previously used.[1]  We also determined that with the missed children implied by the updated 
SIA characterization kept close to the NPAFP data, a slightly lower R0 provides more realistic 
incidence during the years affected by the suspension of vaccination in some northern Nigerian 
states (2003-6).[11]  We assumed for simplicity that the chronically under-vaccinated 
subpopulation receives no routine polio vaccinations at all (instead of a very low routine 
immunization coverage level), adjusted the seasonality for R0, and modified some of the take 
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rates. For India, access to the AFP data dating back to 1997 revealed that we previously assumed 
many more missed children than supported by the NPAFP data.  This led to more significant 
changes, including characterization of large under-vaccinated subpopulations in both Bihar and 
Western Uttar Pradesh to sustain transmission through 2011 despite extremely low zero-dose 
proportions among NPAFP cases in the general population.  In addition to these changes, Figures 
A3-A5 show the assumed true coverage and repeated miss probabilities for each SIA in the three 
situations.  For northwestern Nigeria and northern India, we characterized the SIAs to produce 
implied zero-dose proportions over time among 18-month old children in the general population 
roughly similar to those reported over time by NPAFP cases of similar age, as shown in Figures 
A6 and A7.  Figures A8-A10 show the updated model results compared to the available data and 
the results reported by Duintjer Tebbens et al. (2013).[1]  Small discrepancies between the 
kinetics of the model and reported data arise because the differential-equation based model does 
not account for stochasticity (e.g., tracking who becomes a paralytic case or not if infected for 
the first time, or the die-out of viruses) and the real heterogeneity that exists in the populations 
(i.e., we do not model how the virus moves from one community to another, but focus on the 
overall dynamics and population immunity).[1]  Larger discrepancies (e.g., in northwest Nigeria, 
and in northern India before the early 2000s) suggest that surveillance probably seriously 
underestimated the true incidence, which remains consistent with our understanding of 
surveillance quality in the different situations over time.  In some cases (e.g., type 2 in northwest 
Nigeria in 2009), our simplification of the heterogeneity also probably contributes to larger 
discrepancies.[1]  In northern India, very intense surveillance in recent years may imply that 
some children with AFP did not experience paralysis due to poliovirus despite poliovirus 
isolation, particularly during outbreak peaks that coincide with high WPV prevalence in the 
populations.   We expect the most overestimation of cases by surveillance for WPV3 and 
cVDPV2 because of their low paralysis-to-infection ratios which imply a high total prevalence of 
WPV per true paralytic case.  Moreover, the paralysis-to-infection ratios used in our model 
reflect rates of residual paralysis,[12]while AFP surveillance  also classifies cases of AFP 
without residual paralysis (but with WPV isolated) as WPV-confirmed polio.  
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Figure A1: Waning curves for fecal-oral and oropharyngeal transmission for individuals 
with 1 prior LPV infection or 2 or more prior LPV infections.  
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Figure A2: SIA tree showing the probabilities of receiving a dose in two subsequent rounds 
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Figure A3:  Assumed characterization of SIAs in Tajikistan.  
(a) True coverage (TC) 

 
(b) Repeated missed probability (PRM) 
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Figure A4:  Assumed characterization of SIAs in northern India. 
(a) True coverage (TC) times fraction targeted (F), general population, Bihar 

 
(b) True coverage (TC) times fraction targeted (F), under-vaccinated subpopulation, Bihar 
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(c) True coverage (TC) times fraction targeted (F), general population, WUP 

 
(d) True coverage (TC) times fraction targeted (F), under-vaccinated subpopulation, WUP 
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(e) Repeated missed probability (PRM), general population, Bihar 

 

(f) Repeated missed probability (PRM), under-vaccinated subpopulation, Bihar 
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(g) Repeated missed probability (PRM), general population, WUP 

 
(h) Repeated missed probability (PRM), under-vaccinated subpopulation, WUP 
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Figure A5:  Assumed characterization of SIAs in northern Nigeria. 
(a) True coverage (TC) times fraction targeted (F), general population 

 
(b) True coverage (TC) times fraction targeted (F), under-vaccinated subpopulation 
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(c) Repeated missed probability (PRM), general population 

 
(d) Repeated missed probability (PRM), under-vaccinated subpopulation 
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Figure A6:  Zero-dose proportions implied by the assumed characterization of SIAs in 
northern India. 
(a) Bihar 

 
(b) Western Uttar Pradesh 
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Figure A7:  Zero-dose proportions implied by the assumed characterization of SIAs in 
northern Nigeria. 
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Figure A8:  Model for Tajikistan, showing the updated result and the result from Duintjer 
Tebbens et al. (2013).[1] 
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Figure A9:  Model for northern India, showing the updated result and the result from 
Duintjer Tebbens et al. (2013).[1] 
(a) Type 1 

 
(b) Type 2 (model incidence includes only last reversion stage corresponding to cVDPVs) 
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(c) Type 3 
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Figure A10:  Model for northwestern Nigeria, showing the updated result and the result 
from Duintjer Tebbens et al. (2013).[1] 
(a) Type 1 

 
 
(b) Type 2 (model incidence includes only last reversion stage corresponding to cVDPVs)  
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(c) Type 3 
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